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ABSTRACT 

A technique which yields fast parallel algorithms for several zero-one supply

demand problems is presented. We give NC algorithms for the following 

related problems: 

(1) Given a sequence of supplies a 11 .•. ,an and demands b1, ... ,bm, con

struct a zero-one flow pattern satisfyiag these constraints, where every supply 

vertex can send at most one unit of flow to each demand vertex. 

(2) Given a sequence of positive and negative integers summing to zero, 

representing supplies and demands respectively, construct a zero-one flow pat

tern so that the net flow out of (into) each vertex is its supply tdemand), where 

every vertex can send at most one unit of flow to every other vertex. 

(3) Construct a digraph without self-loops with specified in- and out-degrees. 

We extend our results to the case where the input represents upper 

bounds on supplies and lower bounds on demands. 

1. Introduction 

Supply-demand problems are fundamental in combinatorial optimization 

([FF],[La]). In one formulation of the problem the input is a network in which each 

arc has a non-negative capacity, and each vertex has a certain supply or demand 

(possibly zero). The task is to find a flow function, such that the flow through each 

arc is no more than its capacity and the difference between the flow into a vertex 

and out of it is equal to its supply (or demand). This problem is equivalent to the 

general max flow problem, and can, therefore, be solved efficiently sequentially 

([La],[PS],[GT]), but probably has no efficient parallel solution, since it is P-
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complete ([GSS]). There are, however, many interesting special cases of this prob

lem whose solutions do not require the full power of general max flow. 

In this paper we are concerned with several such problems. The first problem 

we discuss is: given a sequence of supplies, a v ... ,a,17 and demands, 

b 17 ..• , bm, construct a zero-one flow pattern satisfying these constraints, where 

every supply vertex can send at most one unit of flow to each demand vertex. 

Equivalently, we can state this problem as that of constructing a zero-one matrix, 

M, having ai 1 's in the i 'th row and bj 1 's in the j'th column (for all 

1 sis n , 1 Sj s m). We will refer to this problem as the 

matrix construction problem. M is called a realization for the input Ca,b). There is 

a simple sequential algorithm for constructing a realization if one exists ([FF],[G]): 

select any row, assign its 1's to the columns having largest column sums and 

repeat this procedure in the reduced problem. If this procedure gets stuck (i.e. 

some column sum becomes negative), then no realization exists. 

This algorithm, although easy to implement sequentially, seems very hard to 

parallelize. Thus it is natural to ask if there is a fast parallel algorithm for this 

problem. Two remarks are relevant to this question: first, the problem can be 

solved by network flow techniques. Since the capacities are small (polynomial in 

the size of the flow network), there are Random NC algorithms for the problem by 

reduction to maximum matching ([KUW2],[MVV]). Second, there is a simple 

sequential method for testing whether an instance, (a,b) is realizable ([FF],[B]). It 

is based on partial sums of the sequences, and can be implemented in NC in a 

straightforward manner. However, this method does not yield a way of construct

ing a realization. This is another example of the apparent gap between search and 

decision problems in the parallel realm ([KUW1]). 

We present a deterministic NC algorithm for the matrix construction problem. 

Our algorithm can be implemented to run in time 0(log4 IMI> using O(!MI·(n + m)) 

processors on a CRCW PRAM, or in time 0(log3IMI> using O<IMI·(n+mJ3J proces

sors on an EREW PRAM, where M is the realization matrix with n rows and m 

columns and IMI is the size of M (i.e. n·m). When n =8(m) the number of proces

sors is O<IMIL5). and 0(IMI 2·
5) respectively. 

The algorithm is based on a careful examination of the network flow formula

tion of the problem. It exploits the fact that there are only a polynomial number of 

cuts which need to be considered, and that this set of potentially min cuts has a 

natural ordering associated with it. 

The methodology we develop enables us to solve the following two related 

problems (with the same time and processor bounds): 

(1) The symmetric supply -demand problem - given a sequence of positive and 

negative integers summing to zero, representing supplies and demands respec

tively, construct a zero-one flow pattern so that the net flow out of (into) each 
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vertex is its supply (demand), where every vertex can send at most one unit of flow 

to every other vertex. Notice that this problem is quite different than the matrix 

construction problem, since it does not have a "bipartite" nature. 

(2) The digraph construction problem - construct a simple directed graph with 

specified in- and out-degrees. This corresponds to constructing a zero-one matrix 

with specified row and column sums, where the diagonal entries are forced to be 

zero. [FF] and [B] give a simple sequential algorithm when the in- and out

degrees are sorted in the same order (i.e. a vertex with higher in-degree has higher 

out-degree). Our algorithm is the only one we know of for general orders that does 

not use max flow. 

We extend our results to the case where the input represents upper bounds on 

supplies and lower bounds on demands. 

An outline of the paper follows: 

In section 2 we explain in detail our methodology. We then state the matrix 

construction algorithm formally and finally discuss its parallel complexity (time 

and processor bounds). 

In section 3 we describe how our techniques can be used to yield a solution to 

the symmetric supply-demand problem. 

Section 4 contains a description of the algorithm for the digraph construction 

problem. 

Finally, in section 5 we describe our method for solving the supply-demand 

problems when we are given upper bounds on supplies and lower bounds on 

demands. 

A few words about parallel algorithms. Our algorithms use, in various places, 

partial sum computations. The basic problem in this category is - given a sequence 

x 1, ... ,Xn, compute all sums of the form ±xi. This problem is widely mentioned 
i = 1 

in the literature (e.g. [F],[MR]) and we will not discuss it in this paper, other than 

mentioning. that it can be solved efficiently in parallel. Several other tools that we 

use implicitly are finding connected components ([SV]) and various algorithms on 

trees ([TV]). 

2. The Matrix Construction Problem 

2.1. The Slack Matrix 

Our parallel algorithm is based on a careful analysis of the network flow for

mulation of the problem. The main tool we use is, what we call, the slack matrix 

which is similar to the "structure matrix" of Ryser [R]. In order to define the slack 
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matrix, we need to look at the solution to our problem by network flow. Given the 

input (a,b): a 1 ~ a 2 ~ ···~an, b 1 ~ b 2 ~ • · · ~ bm, we construct a flow network, 

N, as shown in fig. 2.1: the vertex set consists of a source, s, a sink, t, vertices 

ui , 1 sis n corresponding to rows and vertices uj , 1 Sj s m corresponding to 

columns. The arc set contains three types of arcs: for all 1 sis n, 1 Sj s m there 

are arcs (s,ui) of capacity ai, (u1,t) of capacity bj and (ui,uj) of capacity 1. 

Fig. 2.1 : Flow network for solving the 0-1 matrix construction problem 

Let S = 2:ai = :2: bi. Clearly the max flow value in N is bounded by S. Furth-

i=l J=l 

ermore, a flow which satisfies all rows and columns sums is of value S. It follows 

(by the max flow - min cut theorem) that the problem instance (a,b) is realizable if 

and only if every directed cut in N has capacity at least S. 

Let C = (C 6 :C1
) be a directed cut in N (i.e. the vertices are partitioned into 

two sets, cs, C1 s.t. sEC', t E C 1
). Say cs contains x vertices from the set 

{u 11 ... , u11 } and m-y vertices from {u 1, ... , um}. Observe that if we replace uj by 

ui in cs, for some i <j, then the capacity of the cut can only decrease. Similarly, 

replacing VI£ by u1 in cs can only decrease the capacity of the cut, for l > k. It fol

lows that the capacity of C is no less than the capacity of the cut C:r.y• where 

c:,y = {sJU{ul, ... ,uJU{uy+b"''umJ. Thus there are only n·m cuts, 

{C:r,y I 1 sx s n , 1 sy s m}, which are potential min cuts. The cut C:r.y is shown in 

fig. 2.2. Therefore, necessary and sufficient conditions for the instance (a,b) to be 

realizable are that for every 1 s x s n 1 s y s m: 

capacity(C:r) = ~ ai + :2: b1 + x·y ~ S 
r=r+l j=y+l 

2: ai + (S- fb) + x·y ~ S 
i=:r+l J=l 
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2: ai - ~ bj + x·y ~ 0 
i=.x+l j=l 

Definition: The slack of Cx,y of problem instance (a,b) is: 

sla,£/x,y) = ~ ai - ~ b; + x·y 
i=.x+l j=l 

The slack matrix, SL-b~, is the matrix whose ij'th entry is sl-bc{ij). 
a, a, 

Proposition 2.1: The instance (a,b) is realizable if and only if SLii,b is non

negative. 

Proposition 2.2: Let (a,b) be an instance which is realizable by some matrix, M, 

and assume that sla,£/x ,y) = 0. Then: 

(1) M[ij] = 1 for all lSiSx, lSjSy 

(2) M[ij] =0 for all x+lSiSn ,y+lSjSm 

Proof: Since sla,"£/x ,y) = 0, the cut Cx,y has capacity S, which means that in any 

max flow forward arcs (1) are all saturated, and backward arcs (2) all have zero 

flow. This situation is shown in fig. 2.2. 0 

Fig. 2.2: A tight cut - sl-bctx,y)=O 
a, 

All forward arcs are saturated; All backward arcs have flow 0 

If sla:,r;<x,y) = 0, We will call Cx,y a tight cut. Proposition 2.2 shows that existence 

of a tight cut simplifies the solution considerably. In fact it gives rise to a divide 

and conquer approach: if C, Y is tight, constructing a matrix M[l:n ,l:m] for the ori

ginal problem is reduced to con~tructing the two sub-matrices, M[x + l:n,l:y] and 

M[l:x ,y + l:m]. Of course, we are not always lucky enough to have a tight cut. 
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Our approach is to perturb the input so as to improve our luck! Here is a high

level description of our algorithm: 

(1) Perturb the inputs, Ca, b). Call this new instance ("a, lh 

(2) Recursively solve the instance (a, lh Call the solution M'. 

(3) Correct the matrix M' to obtain a matrix, M, which solves the original 

instance, (a, b'J. 

How do we perturb an instance? A basic perturbation can be viewed as shifting one 

unit from the poor to the rich in order to make the situation tighter: subtract 1 

from ak and add 1 to a1 for some k >l. We do not allow that a perturbation will 

change the crdering of the a/s, so it is necessary that ak >all + 1 and a 1 <a1_ 1 before 

the perturbation. 

Remark: We will be discussing only perturbations of the row sums (the a/s). All 

this discussion holds for perturbation of the column sums as well. 

Proposition 2.3: Let (a,b) be a problem instance, and let (a,7J) be obtained by 

shifting one unit from ak to a1 for some k > l. Then sla:,]I<x ,y) = slo: jj{x ,y) -1 if 

lSx<k, and sla:,]I(x,y) = slo:,jj{x,y) otherwise. 

Proof: This can be seen by looking at the formula for sl. [] 

This proposition shows that a basic perturbation reduces the slack of a certain 

set of cuts, and leaves the rest unchanged. This observation is the basis for our 

algorithm. 

2.2. One Phase of Perturbations 

Achieving poly-log recursion depth for the basic algorithm described in the 

previous section is a non-trivial matter. The reason is that it is hard to control 

which cut or cuts will become tight. Furthermore, since we have limited ourselves 

to perturbations that do not change the ordering of the a/s, it is not clear that a 

tight cut can always be obtained. 

Say we are shifting units from ak to a 1 (for some k >l). How many units can 

we shift? Viewing the unit shifting as a sequential process (i.e. shifting one unit at 

each time step), we can shift until one of three things happens: 

(1) az becomes equal to al-l· 

(2) ak becomes equal to ak + 1 . 

(3) slz;:,f}x ,y) becomes zero, for some l s x < k. 

In case (3) progress is made, since a tight cut is created, and we can split the 

problem into two smaller problems. What about the first two cases? We observe 

that we have possibly reduced the number of different ai values. This observation 
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is the key to our approach for performing perturbations. 

Definition: The complexity of an instance (a,b) comp(a,b) is the product of the 

number of different ai values and the number of different bj values. 

Our parallel algorithm works in phases. The input to a perturbation phase is 

an instance of certain complexity, say K, and the output is one or more instances, 

each having complexity bounded by c·K, for some constant c<l. Finally, if the 

complexity of the input is less than a certain constant, B, we construct a realiza

tion for it (this is the base case). We proceed to describe one perturbation phase. In 

this discussion we will derive the constants c and B. For better exposition we will 

first describe a phase as a sequential process. The parallel implementation will be 

explained later. 

In each phase either row sums or column sums are perturbed. The sequence 

that is perturbed (row or column sums) is that which has a larger number of 

different values. We will discuss a phase in which row sums are perturbed. 

Phases in which column sums are perturbed are essentially identical. 

A phase starts by selecting a consecutive set of actiue rows, {h, h + 1, ... ,1} . The 

parameters h and l depend on the input, (a,b) and its complexity, K, and will be 

derived later. Let L=a1+ 1 and H=ah-l· The perturbation is performed as fol

lows: repeatedly shift units from the lowest active row, (initially row l), to the 

highest active row, (initially row h). A row becomes inactive, and stops sending or 

receiving units, when its row sum either drops to L or reaches H. The phase ter

minates when one of two things happens: 

(1) At most one active row is left. 

(2) sla,~x ,y) becomes zero, for some h ~ x < l. 

In case ( 1) no tight cuts have been obtained, but the row sums of all the active 

rows (except, possibly, one) have become either L or H. Therefore the number of 

different row values decreases. 

In case (2) one or more tight cuts are created, and the instance can be split, using 

proposition 2.2, into two smaller instances ("smaller", in this case, means less rows 

and lower complexity). 

Let a,/3 and "'( be the number of different values in the sets {a 1, ... ,ah-d, 

{ah, . .. ,az} and {a1+ 1, ... ,an} respectively. We want to select these parameters so 

as to minimize the complexity of the outputs of the phase: 

Case (1) : The number of different row sums remaining is bounded by a+ y + 1 

(since the f3 values corresponding to active rows disappeared, except for at most 

oneJ. 

Case (2) : Zero slack is obtained for one or more rows in the range [h ,l -1]. A sim

ple calculation shows that the number of different row sums in the resulting 

instances is bounded either by a+ f3 + 1 or by f3 + y + 1. 
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Thus we need to minimize the maximum of a+ fJ + 1 , a+ y + 1 and fJ + y + 1 

subject to a+fJ+y=K (where K = comp(a,b)). The solution is, of course, to have 

a,fJ and y as equal as possible, i.e. all roughly K/3. From this calculation one can 

see that the complexity can be reduced by these perturbations as long as the 

number of different row values is more than 5. 

To summarize, if the input to a phase has complexity K, the outputs have 

complexity bounded by f 2~l+1. Thus the total number of phases is O(log(n·m)). 

The base case is any instance with at most 5 different row values and 5 different 

column values. 

We next discuss the parallel implementation of one perturbation phase. The 

first step is to calculate the new row sums and slack matrix under the assumption 

that none of the cuts become tight. If this new slack matrix is strictly positive 

then, indeed, we are in case ( 1). 

Let p be the initial number of active rows (p = l- h + 1). After the phase 

(assuming case (1)), there will be q rows of value H, p- q + 1 rows of value L and 

one row of value I, where H >I~ L. q and I are easy to calculate: 

±<ai-L) 

q = l i=~ -L J 

I = ±<ai-L) mod (H -L) 
i=h 

Let mi = min {sl-al,i ,y) I 1 sy s m}, and let mi' be the new minimum slack in 

row i after the phase is completed (assuming case (1)). Then: 

For hsi<h+q 

For h +q Si <l m I 
, 

- ~(H-ai) 
j=h 

± (ai-L) 
j =i+l 

If all the mi' are positive, then we are provably in case (1). If not, we need to 

detect at what "time step" (during the "sequential process") the first tight cut was 

created. This turns out to be a simple task for the following reason: if we plot the 

value of any entry in the slack matrix as a function of time, it decreases by one 

unit each step until some point in time, and remains constant from that point on. 

Thus the rows where the first zero slack occurs are the rows for which m is 

minimum among the rows that have m' so. The total number of units shifted in 

the phase is this minimum m value. It is easy to compute the new row sums given 

the number of units shifted. 



- 9 -

In both cases ((1) and (2)) we need to calculate the number o( units shifted 

from row j to row i, for every h s i <j s l. (These numbers will be used later, in 

the correction phase.) This calculation can be performed by a simple partial-sums 

computation. 

2.3. Correcting a Perturbed Solution 

After a realization is obtained for the perturbed instance we need to correct it 

in order to obtain a realization for the original instance. Clearly the required task 

is to shift units back to their original rows. The rows which participate in the 

shifting of units are divided into two sets - the donors and the receivers, where 

donors shift units to the receivers during the perturbation phase, and get them 

back at the correction phase. Note that no row is both a donor and a receiver in 

any given phase. Let ilijJ be the the number of units shifted from the donor j to 

the receiver i in the perturbation phase. 

Definition: Let M be a realization matrix. Sliding a unit from row i to row j 

means changing M[i,k] from 1 to 0 and M[j,k] from 0 to 1, for some column, k. 

Lemma 2.1: Given any realization of the perturbed instance, M', it is always pos

sible to correct it by sliding s(j,i) units from receiver, i, to donor, j, for all 

receivers and donors. 

Proof: Again it is convenient to view the process of sliding units as a sequential 

one. Assume that some of the units have been slid, but less than s(j,i) units have 

been slid from row i to row j. Call the current matrix M 1. We will show that it is 

possible to slide a unit from row i to row j in M 1> which proves the lemma. 

Since units were shifted from row j to row i in the perturbation phase, it is 

the case that ai was no larger than ai before the phase began. Other perturbations 

in which rows i and j might have ·participated only increased the row sum of i and 

decreased the row sum of j. Now, since less than s(j,i) units have been slid from 

row i back to row j, it follows that row i has more 1's than row j in M 1. By the 

pigeonhole principle there is some column, k, such that M 1(i,k]=l and M 1U,k]=O. 

[] 

The implication of the proof above is that we do not need to be very careful in 

the way we slide units. The main problem we need to solve is that conflicts may 

arise when we slide many units in parallel. This could happen since a donor might 

have shifted units to many receivers, and a receiver might have received from 

many donors. Our goal is to break down the problem into a set of independent 

problems, which can all be solved in parallel. The first step is to get a formal 

description of the donor-receiver relation. 

Definition: The donation graph G = (D ,R ,E) is a bipartite graph with a vertex, 

diED, representing each donor and a vertex r, E R representing each receiver, such 
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that the edge {dj,rJ is in E if and only if s(j ,i) >0. 

The following lemma plays a key role in simplifying the situation: 

Lemma 2.2: The donation graph, G, is a forest. 

Proof: Call a neighbor of a vertex, v, nontrivial if it has at least one other neigh

bor besides u. It follows from the way the perturbations were performed that each 

vertex, u, has at most two nontrivial neighbors, one that became inactive before u, 

and one that became inactive after u. Furthermore, all the vertices can be ordered 

according to when they became inactive. Therefore G cannot contain any cycles. 

[] 

One can see that a matching in the donation graph, G, corresponds to an 

independent set of sliding problems. However, there is no guarantee that the edges 

of G can be partitioned into a small set of matchings, since G might have vertices 

of high degree. Thus a more subtle partition is required. 

Definition: A constellation is a subgraph of a given graph all of whose connected 

components are stars (where a star is a tree with at most one non-leaf vertex). 

Lemma 2.3: The edges of a forest can be partitioned into two (edge-disjoint) con

stellations. 

Proof: It suffices to show that the edges of a tree can be partitioned into two con

stellations. Let T = ( V ,E) be a tree, and take it to be rooted at some vertex, P. 

The level of a vertex is its distance from P. v is the parent of u if {u ,v} E E and u is 

closer to P than u. The partition of T into two constellations, 

C 1 =(V,E 1), C2=(V ,E 2), is as follows: 

E 1 = { {u,v} I u is the parent of v, the level of u is even } 

E 2 = { {u,u} I u is the parent of v, the level of u is odd} 

An example of such a partition is shown in fig. 2.3. [] 
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Fig 2.3 : Partitioning a tree into two constellations 

Our solution is based on the observation that a constellation corresponds to a set of 

independent sliding problems which we can solve in parallel. Therefore our 

approach will be to partition the donation graph into two constellations and then 

to slide units in two stages - first corresponding to one constellation and then to 

the other. 

A star in the donation graph corresponds to several donors with a common 

receiver or several receivers with a common donor. These two cases are symmetric, 

so we will discuss only the first one. In what follows we describe a parallel algo

rithm that slides all the units corresponding to a star with receiver R and donors 

D 1, ... ,Dd. Let M be a realization matrix of the perturbed instance we are about 

to correct. Let r , d 1, ... ,dd denote the number of 1's in rows R , D 1, ... ,Dd 

respectively and let si = s(Di,R). We need to slide si units from R to Di, for all 

1 sis d in parallel. Our approach is to solve a matching problem in the following 

bipartite graph, B =(X, Y ,E): 

X = { Xj I M[R j] = 1} 

Y = {Yilt I 1 sis d , 1 s k s si } 

E = { {xj,Ji.k} I M[Dij] = 0} 

Lemma 2.4: Every matching of B which covers all the vertices in Y corresponds to 

sliding si units from R to Di, for all lSi Sd simultaneously. 

Proof: By construction, there are ± si vertices in Y, one corresponding to each 
I: 1 

unit that was shifted from some Di to R. There is an edge between x1 and Yi,k if 

and only if a unit can be slid from row R to row D1 in column k. The claim is, 
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therefore, evident. 0 

At first sight it seems that we need to solve a maximum bipartite matching 

problem, but closer observation reveals the following: 

Lemma 2.5: Every maximal matching in B is maximum. 

Proof: It suffices to show that any matching which does not cover all the vertices 

in Y can be extended. The degree of Yi.k in B is, by definition, at least r -di. 

Before the perturbation phase the row sum of R was no less than that of row Di. 

After the perturbations, the row sum of R increased by at least fsi, and the row 
i=l 

sum of Di decreased by at least 1. Therefore: 

For all i, k degree(Yi,Jr.) ~ r-di ~ fsi + 1 = IYI + 1 
i=l 

Since any matching contains no more than I Yl edges it follows that no partial 

matching is maximal. 0 

A maximal matching can be constructed efficiently in parallel ([IS],[Lu]). Our 

parallel algorithm is, therefore, the following: construct the donation graph, and 

partition it into two edge-disjoint constellations, C 1 and C 2 . For each component of 

C 1, construct the bipartite graph, B, as described, and find a maximal matching, F, 

in it. For all edges of B do in parallel: if {x;.Yi.J EF then slide a unit from R to Di 

in column j. Finally, repeat this procedure on C2 (with the updated matrix). 

It follows from lemmas 2.4 and 2.5 that after performing these operations all 

the perturbations (of the current phase) are corrected. 

2.4. The Base Case 

The base case for our algorithm is when the number of different values of row 

and column sums is bounded by a constant (5). The problem is then characterized 

by the different values: a 1, · · · ,a 5 and b1, · · · ,b 5 and their multiplicities 

n 1, · · · ,n 5 and mb · · · ,m 5 respectively. Let M be the realization matrix we con

struct, and let MiJ be the submatrix of M induced on the rows with sum ai and 

columns with sum b;. We construct M in two steps: 

Step 1: For each ij,l~ij~5, determine the number, FiJ• of units in Mij· 

Step 2: For each i J., 1 ~ i j s 5, distribute the FiJ units between the different rows 

and columns of MiJ· 

We carry out step 1 by constructing a flow network of constant size, and 

finding a max flow in it. The network has twelve vertices: a sources, a sink t, five 

"row" vertices ul> · · · ,u 5 , and five "column" vertices v1, · · · ,v 5. The arcs are of 

three kinds: arcs from s to each u1 with capacities ni'ai, from each v; to t with 
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capacities mrbj, and from each ui to each vj with capacities n(mj. This network is 

simply the result of taking the original network flow formulation for this problem, 

and compressing all "row" vertices with equal capacity into one vertex, and simi

larly for "column" vertices. Since this network is of constant size, a max flow can 

be constructed in constant time using standard sequential methods. 

In step 2 we convert the solution for the compressed network to a solution for 

the original network by distributing the flow along each compressed arc evenly 

between the arcs it defines. We do this by providing a solution for the following 

problem: construct MiJ so that xiJ selected rows have each riJ units, YiJ columns 

have each ciJ units and each of the remaining rows and columns have riJ -1 and 

ciJ -1 units respectively. First, it is not hard to see that: 

F· 
riJ =r ~J 1 Xj.j =FiJ mod ni 

I 

F· 
ci,j =r ~J 1 

J 
Y. ·=F ·mod m· 

IJ IJ J 

Assume we want each of the first xiJ rows and first YiJ columns to have riJ and ciJ 

units respectively. Our solution is to put the units of the first row in the first riJ 

columns, the units of the second row in the cyclically next set of columns etc. An 

example is shown in fig. 2.4. 

+ + + + + + 
1 1 1 

1 1 1 

1 1 1 

1 1 

1 1 

Fig. 2.4: Structure of Mi,j with 5 rows, i columns and 13 units. 

Selected rows and columns are marked with arrows. 

A construction for arbitrary sets of selected rows and columns \not necessarily the 

first ones) is obtained from the one described above by simply permuting the rows 

and columns appropriately. 

Now we are ready to construct a realization, M, for the base case. The values 

FiJ determine the xiJ. and YiJ values. All we need to ensure is that any two r~ws 
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(columns) with equal row (column) sums get selected the same number of times. 

This can be done by selecting the first xi,l rows in Mi,l• the cyclically next set of 

xi,2 rows in Mi,2 and so on, and similarly for columns . 

Since ...e., F · = n··a L !J I I 

j=l 

the total number of rows selected in 

{Mi,V ... ,Mi.5} is an integer multiple of ni, and it follows that any two rows 

with equal row sums are selected the same number of times. A similar argument 

holds for columns. Thus the construction described yields a correct solution for the 

base case. 

2.5. The Algorithm 

In this section we state the algorithm more formally. A few words about nota

tion: I.P is shorthand for "in parallel". comments are between double parentheses; 

l :k denotes a range of indices (in a matrix or a sequence); II denotes concatenation 

of sequences; #A is the cardinality of the set A. 

procedure MATR/X_CONSTRUCTION(a,b) 

(( This is the recursive procedure for constructing a matrix, M, with given row 

- - 1 sums, a, and column sums, b. The row and co umn sums are assumed to be given 

in a non-decreasing order. )) 

(1) Let n = length of a; m = length of b. 
-+ 

(2) Compute Vr; and Vii- the number of different values in a and b resp. 

(3) If Ya-s5 and Vils·s then return BASE_CASE(a,b). 

(4) (a,{1,S ,SL,pert,zerop) = PERTURBATION(a,bi. 

(5) If not zerop then M' = MATR/X_CONSTRUCTIONCa,{1). 

(6) Else let x ,y be such that SL[x ,y] = 0 and either a% is in the middle third of 

the a values or by is in the middle third of the b values. Do the following I.P: 

(6.1) I.P set M'[iJ]=1 for all1SiSx, 1SjSy. 

(6.2) I.P set M'[iJ]=O for all x <i Sn , y <j sm. 

(6.3) 

M'[x+1:n, l:y] = MATRIX_CONSTRUCTIONr a(x+l:n], ,8(1:y]-x) 

(6.4) 

M'[l:x, y+l:m] = MATRIX_CONSTRUCTION( a[1:x]-y, ]l[y+l:m]) 
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(7) M = CORRECTION(M' ,S ,pert). 

(8) Return M. 

end MATRIX_CONSTRUCTION 

procedure PERTURBATIONCa,b) 

(( This procedure computes one perturbation phase. The inputs are row sums, a, 

and column sums, b. The outputs are new row and column sums, a and ft resp, the 

slack matrix SL, the matrix of numbers of units shifted S, a variable pert indicat

ing whether row sums or column sums have been perturbed and a variable zerop 

indicating if zero slack is obtained. )) 

(1) Let n = length of a; m =·length of b. 

(2) Compute V-a and V r- the number of different values in a and b resp. 

If Va.2: Vr then set pert= "rows". Else set pert= "columns" and perform the 

rest of this routine with b, V r; and m instead of a, Vc; and n resp. 

(3) Find h and l for which ah :;t:ah_ 1 , a1:;z:a1+ 1 , and the number of different 

V- y_ 

values in <a 1, ... ,a~t- 1 > and <ah, ... ,a1> are t-fJ and r 
3
a1 resp. Let 

H =ah_ 1 and L =a1+ 1· 

(4) Compute q and I = ±(ai-L) mod (H -L). 
i=h 

(5) Compute SL[iJ] (( the slack matrix )) for all 1 sis n , 1 Sj s m I.P. 

(6) Compute mi =min {SL[iJll1sjsm} for all hSiSli.P. 

(7) Compute - ~ (H -a} for all h Si <h +q I.P. 
j=h 

(8) Compute ± (a1-L) for all h+qSi<l I.P. 
j=t+1 

(9)Ifmi'>OforallhSi<l then set T = ± (ai-L)+ max{O,ah+q-1}. 

i=h+q+l 

Else set T = min {mi I mi' s 0}, and set zerop to true. 

(10) Initialize S[i J] = 0 for all 1 s i J s n. 

(11) Ui',S) = SHIFT_UNITS\<ah, ... ,a1>,T,H,L!. 
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(12) Set a = <a1, ... ,ah -1 > II a' II <a/+1• ... ,an>. 

(13) Set SL[ij] = SL[ij]- ~ max{O,ak -ak} for all h Si sl , 1 Sj s m I.P. 

(16) Return (a,b,S ,SL,pert). 

end PERTURBATION 

k =h 

procedure SHIFT _UNITS(a,T,H,L) 

(( Shifts a total of T units between active rows with row sums a. H is the upper 

bound on new rows sums and L is the lower bound. Returns the new row sums and 

the matrix, S, of the numbers of units shifted between pairs of rows. )) 

(1) Denote the elements of a by ah, ... ,a1 

(2) Compute for all 1 sis T I.P: 

di = max { j I is ±cak -L)} ((donor of unit i)) 
k =j 

ri = min { j I is ~ (H -ak)} (( receiver of unit i )) 
k=h 

(3) Compute S[iJ] = #{ k I d 11 =i, rk=j} for all hSj<iSl I.P. 

(5) Return Ca,S). 

end SHIFT _UNITS 

procedure CORRECTION(M,S,pert) 

(( This procedure computes one correction phase. The inputs are a realization 

matrix, M, a matrix, S, containing amounts of units to be slid and a variable, pert, 

indicating if units need to be slid between rows or columns. The output is the 

matrix, M, after it has been corrected. )) 

(1) Let n = length of S. 

(2) Construct the donation graph, G, where: 

V(G) = {1, ... . n} £(G) = { {ij} I S[ij]>O} 

(3) For every connected component, T, of G do I.P: 
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(3.1) Partition T into two constellations, C 1 and C2. 

(3.2) Perform SLIDE_UNITS(C ,M ,S ,pert) for every connected com

ponent, C, of C 1 I.P. 

(3.3) Perform SLIDE_UNITS(C ,M ,S ,pert) for every connected com

ponent, C, of C 2 I.P. 

(3.4) Return M 

end CORRECTION 

procedure SLIDE_UNITS(C ,M ,S ,pert) 

(( Units are slid in the matrix M, between one donor and many receivers or one 

receiver and many donors. The vertices of the star, C, are the participating 

rows/columns of M. The matrix, S, contains the numbers of units to be slid and 

the variable pert indicates if units need to be slid between rows or columns. )) 

(1) Let c be the unique non-leaf of C (( If C has exactly two vertices let c be 

any one of them )). Let lv ... ,ld be the remaining vertices of C. 

(2) If pert ="rows" then let Mc,M 11 , ••• ,Mza be rows c,l 1, ... ,ld of M. 

Else let Mc,Mz
1

, ••• ,Mzrt be columns c,l 1, .•• ,ld of M. 

(3) If S[c ,l t1 >0 (( i.e. c is a donor and li are receivers )) then complement 

Mc,Mz
1
, ••• ,M1rt I.P, and set comp to true. 

Let si = max{S[li,c],S[c,li]} (( the number of units to be slid from Me to Mz )) 
I 

for 1 si sd. 

(4) Construct the bipartite graph, B =(X, Y ,E): 

y = { Yi .k I 1 :S i s d , 1 :S k :S s i } 

(5) Compute F, a maximal matching in B. 

(6) For all {xj,Yi,JEF do in parallel: set Mc[j]=O and Mli[j]=l. 

(7) If comp then complement MnMI: . ... . Mid I.P. 

(8) Copy Mc,Ml
1

, ••• )vf1rt back into their original location in M (( see step (2) 

) ) . 
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end SLIDE_UNITS 

----procedure BASE_CASE(a,b) 

(( Constructs a matrix, M, with row sums a and column sums b, where the number 

of different values of elements in a and b is at most five. )) 

(1) Let a 1 > · · · > ak and b 1 > · · · > b1 be the values of the elements of a · 
and b resp., and let n 1, ... ,nk and m 1, ... ,m1 be their respective multi

plicities. 

(2) Construct a flow network, N, with vertices s, t, u 1, ..• , uk, v1, ... , Vt 

and the following arcs (for all 1 sis k , 1 Sj s l ): 

from s to ui with capacity ni"ai 

from v1 to t with capacity mj'bJ 

from ui to v1 with capacity n(mJ 

(3) Find a max s- t flow in N. For all ij let FiJ be the flow on the arc (ui,v1). 

(4) For all ij construct MiJ as shown in figure 2.4. There are FiJ mod ni 

selected rows, starting at row (f Fi,h + 1) mod ni (cyclically) and 
h=1 

FiJ mod m1 selected columns, starting at column <
1f Fi,h + 1) mod ni. 
h=1 

(5) Let M be the appropriate concatenation of the M,/s. 

( 6) Return M. 

end BASE_CASE 

2.6. Parallel Complexity 

The time and processor bounds of our algorithm depend on how we chose to 

implement the maximal matching routine. Two competing implementations are 

given in [IS] and [Lu]. On a graph with e edges, Israeli and Shiloach's algorithm 

takes time 0 (log3e) and uses 0 (e) processors on a CRCW PRAM. Luby's algorithm 

requires only 0(log2e) time on an EREW PRAM, but uses 0(e 2) processors. It is 

straightforward, though somewhat tedious, to verify that all the other operations 

in one phase of MATRIX_CONSTR UCTION can be performed with the resources 

required for maximal matching (in both the implementations listed above). 
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There are O(logjM!) phases (as proven in section 2.2). In a correction phase 

for rows there are O(n) parallel calls to maximal matching on bipartite graphs 

with O(m 2) edges each. When columns are corrected, there are O(m) calls, each of 

size O(n 2). Thus the number of processors required is 

O(nm(n+m)) = O(jMj·(n+m)) using [IS], and 0(nm(n+m) 3) = O(jMj·(n+m)3) 

using [Lu]. When n =9(m) the processor requirements are O(jMjl.5) and O(jMj 2·
5) 

respectively. 

3. The Symmetric Supply-Demand Problem 

In this section we will show how the methodology developed in section 2 gives 

rise to a parallel algorithm to the symmetric problem. Here the input is a 

sequence of integers, f 1 "2! f 2 "2! · · • "2! fn, summing to zero. The goal is to construct 

a flow pattern in which every vertex can send up to one unit of flow to any other 

vertex such that the flow out of ui minus the flow into it is fi (for all 1 sis n ). The 

goal can be viewed as constructing an n Xn zero-one matrix, M (where M[iJ] is 

the amount of flow sent from vertex i to vertex j) such that, for all i, the the 

number of ones in row i minus the number of ones in column i is h Note that 

changing the values along the main diagonal does not change the instance M 

describes, so they can all be set to zero at the end of the computation. 

Again we start with a network-flow formulation for the problem. The flow 

network has n + 2 vertices: s, t, u1, •.• , un. If fi >0 then there is an arc from s to 

ui with capacity h and if fi < 0 then there is an arc from ui to t with capacity h 

Also, there is an arc with capacity 1 from ui to u; for all 1 s i J s n. Examination of 

this network shows that there are only n potential min cuts: of all cuts containing 

x vertices with s, the one containing u1, ... ,ux is of smallest capacity. Thus, for 

this problem we have a slack uector. An analysis similar to the one in section 2 

shows that, for all 1 s x s n: 

slfx) = x·(n -x) - ~{; 
i==l 

It is interesting to note that here, as opposed to the matrix construction problem, 

the object describing the slacks (a vector of length n) has a different size (and 

dimension) than the object being constructed (an n X n matrix). 

A perturbation phase is performed in the same way as in section 2, except 

that there is only one sequence being perturbed (as opposed to separate row and 

column sequences). Again we have the property (similar to proposition 2.3) that 

shifting a unit from j to i (i <j) decreases the slacks at entries i, i + 1, ... ,j -1, 

and does not change the other entries. 
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A correction phase is, however, trickier than before. The reason is that if a 

unit is to be returned from entry i to entry j, it can be done either by sliding a 

unit from row i to row j or by sliding a unit from column j to column i. The 

equivalent of lemma 2.1 holds here, but for each unit only one of the two ways of 

sliding listed above is guaranteed to exist. Furthermore, if we simultaneously try 

to slide units in rows and in columns, conflicts may arise. 

Our solution is to perform the correction in two stages: first slide between 

rows, then slide between columns. The first stage is identical to a row-correction 

phase of section 2. The only difference is that the maximal matching computed 

does not necessarily cover all the vertices of one side of the bipartite graph, B. 

After the first stage, we update the donation matrix (the s(iJ)'s), according to the 

numbers of units slid in the first stage. We then perform a column-correction 

phase for the resulting problem. 

Lemma 3.1: Every maximal matching computed in the second stage is maximum. 

Proof: As in section 2.3, let R, D lt ... , Dd be the vertices of a star in the dona

tion graph. Let B 1 =(X bY bE 1) be the bipartite graph for sliding between the rows 

corresponding to these vertices in the first stage. Let B 2 =(X 2, Y 2,E 2) be the bipar

tite graph for sliding between the columns corresponding to these vertices in the 

second stage. Then, as in the proof of lemma 2.5, for each vertex in Y 2, the sum of 

its degrees in B 1 and B 2 is at least I Y tl + 1. It follows that the degree of every 

such vertex in B 2 is at least I Y 21 + 1. 0 

Corollary 3.1: Every unit that is perturbed gets slid in one of the two stages. 

The base case is solved along the same lines described in section 2.4, but a few 

more details need to be handled. The base case is when there are at most five 

different values, {1 > · · · >{5, with respective multiplicities n 1, ... ,n 5. Again 

we start by finding a max flow in a constant size network (having 7 vertices -

s, t, v1, ... , v5) to determine the number of units, Fi.J• in Mi.J· Now, as opposed to 

the previous case, ~FiJ needn't be an integer multiple of ni. Therefore, after 

j=1 

distributing unit evenly between all rows with the same f value (as described in 

section 2.4), some of these rows will have p units and some will have p -1 units 

(for some appropriate p ). Similarly, not all the columns with the same f value will 

necessarily have the same number of units. We overcome this obstacle by observ

ing that if i and j have the same f value, and if row sum i is greater by one than 

row sum j then column sum i should be greater by one than column sum j. There

fore, the problem is solved by (using terminology of section 2.4) selecting rows and 

columns in the same order. 

Finally we note that the algorithm for the symmetric problem uses the same 

resources (time and number of processors) as the matrix construction algorithm 

(see section 2.6). 
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4. Digraph Construction 

In this section we describe our solution for the problem of constructing· a sim

ple digraph with specified in-degree and out-degree sequences. By "simple" we 

mean no self loops and no parallel arcs. Notice that if self loops are allowed, this 

problem is exactly the matrix construction problem described in section 2. The 

digraph construction problem can be stated as follows: given two equal-length 

sequences, (o 1, ... ,on) and (i 1, ... ,in) , (that are not necessarily sorted!), con

struct an n X n zero-one matrix, M, that has ok 1's in row k and ik l's in column k 

(for all 1 s k s n ), so that all the elements on the main diagonal of M are zero. 

Our solution is based on the algorithm described in section 2. We start, 

again, by looking at the network flow formulation for this problem. The network is 

almost identical to the one in figure 1, except that each vertex on the left is miss

ing one outgoing arc, and each vertex on the right is missing one incoming arc. It 

is convenient to view the missing arcs as existing arcs with capacity zero. We will 

call these blocked arcs and the corresponding entries in the realization matrix 

blocked entries. Our first goal is to show that in this case too there are only n 2 

potential minimum cuts. Let a 1 <=: • • • <=:an and b1 <=: • • · <=: bn be the sorted 

sequences of out-degrees and in-degrees respectively (i.e. a is obtained by sorting 

o and b by sorting I), and let N be the network corresponding to a and b (similar 

to the one shown in figure 1). The capacity of the cut C:r.,y (as shown in figure 2) is, 

in this case: 

capacity(C:r.) = ~ a, + ~ bj + x·y -B(x,y) 
i=:r.+l j=y+l 

where B(x,y) is the number of blocked arcs crossing the cut. Since there is at most 

one blocked entry in every row and every column, a simple argument shows that if 

a:r.>a:r.+l and by>by+ 1 then this cut has the smallest capacity among all cuts for 

which the s side contains x vertices on the left and n-y vertices on the right. 

However, if, say, a:r. =a:r. + 1 then a the cut obtained by switching vertices u:r. and 

u:r. + 1 might have smaller capacity, since the number of blocked arcs crossing it 

could be greater by one. Therefore, if we want the cuts C:r.,y to be the only poten

tial minimum cuts, we need to be careful about the ordering of "row" vertices 

corresponding to rows with equal row sums, and similarly for columns. The condi

tions we need to enforce on the order are, simply: if a:r. = a:r. + 1> then the blocked 

entry in row x should be in a lower-indexed column than the blocked entry in row 

x + 1. The symmetrical conditions should hold for columns. 

These conditions can be obtained by two rounds of sorting: first sort rows 

according to row sums. Sort rows with equal sums according to the corresponding 

column sums (i.e. the correspondence given by the o and f sequences), breaking 

ties arbitrarily. Now, sort the columns according to column sums. Columns with 

equal sums are sorted according to the order of the corresponding rows that was 
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obtained in the first round. No ties can arise, since there is, at this point, a total 

ordering of the rows. 

After this preproce-ssing is done, we are ready to proceed along the same lines 

as the algorithm described in section 2, with a few modifications. The slack func

tion is now: 

sla,f/x,y) = ~ ai - ~bj + x·y - B(x,y) 
i=x+l j=l 

By the discussion above, it is again true that an instance is realizable if and only if 

its slack matrix is non-negative. If sla.f/x,y)=O then M[iJ]=l for all 

lsisx, lsjsy except for blocked entries, and M[iJ]=O for all x+1Si:5n 

,y+lSjSn. 

The perturbation phases work identically here, since they only deal with the 

row and column sums, and not with the internal structure of the realization 

matrix. 

In the correction phases there is a small modification - units should not be slid 

into blocked entries. This is fixed by modifying the bipartite graph, B, in the obvi

ous way. Also, we need to re-examine the proof of lemma 2.5. It works out exactly 

right in this case, since it turns out that: 

for all i,k degree(Ji,k) ~ I Yl 

which is precisely sufficient (see the original proof). 

The only tricky modification turns out to be for the base case. Again, there 

are at most five different row sum values and five different column sum values. 

The difficulty is that there are blocked entries scattered throughout. This spoils the 

simple cyclic realization that existed. We overcome this by partitioning the matrix 

into finer sub-matrices than in the previous case. Each of the Mi,/s is partitioned 

further so that each sub-matrix either contains no blocked entries, or contains a 

blocked entry in every row and column. 

Again we construct a realization in two steps. The first step is to determine 

the total number of units in each sub-matrix. This is done, here too, by solving a 

max flow problem (where the capacity of a sub-matrix is the number of non

blocked entries in it). Again, the network here is of constant size, so a max flow 

can be computed in constant time. In the second step, the units are distributed 

within the sub-matrices. The key here is to deal first with the sub-matrices con

taining blocked entries. It is not always possible to select arbitrary sets of rows 

and columns, but it is possible to distribute the units so that the discrepancy 

between any two rows or any two columns will be at most one unit. This can be 

done as follows: say the blocked entries are along the main diagonal (this will 

actually always be the case because of the preprocessing), and let k be the number 
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of rows (and columns) of the sub-matrix. Let dr (the r'th diagonal) be the set of 

entries, (ij), for which j -i = r (mod k). If F units are to be distributed, fill 

d 1, ... ,d F , and place the remaining units in d F An example is shown in 
lkl lkl+l 

figure 4.1. 

Figure 4.1: A 5 X 5 sub-matrix with blocked entries containing 11 units. 

Now, after the "problematic" sub-matrices have been dealt with, we can construct 

the sub-matrices with no blocked entries in the same fashion as described in sec

tion 2.4. The same arguments for proving validity of the scheme go through, 

because there is at most one blocked entry in every row or column. 

5. Bounds on Supplies and Demands 

Our parallel algorithm for the matrix construction problem can be extended to 

the case in which the sequences a and b represent upper bounds on row sums and 

lower bounds on column sums respectively. This is a natural extension of the 

matrix construction problem when rows represent supplies and columns represent 

demands. 

Let U = ~ai and L = ~bi. Let M be a realization matrix for the 

i=l i=l 

instance (a,b>, and letS be the number of l's in M. Then, clearly, L ~s ~u. Say 

we fix S. Then the problem boils down to the following: modify the sequences a 
and b to obtain a and l1 respectively so that: 

(1) ai~ai and bj~fJJ for all l~i~n, l~j~m. 

(2) 2:ai = 2:PJ = s. 
i=l j=l 

(3) Cii,/1) is realizable. 

It is, of course, not always possible to satisfy all three conditions simultane

ously. Thus our goal is find such a pair of sequences if it exists. 
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The key for obtaining the sequences a and fi is to consider the slack matrix, 

as defined in section 2.1. Recall that the condition for realizability is that all the 

slacks are non-negative, and that: 

Lemma 5.1: Let a 1 ~ · · · ~an and b 1 ~ • • • ~ bm. Let a(k) <#([)) be the 

sequence obtained from a (b) by subtracting 1 from a~e (adding 1 to b1). Then 

(a(1),P(m)) is realizable if(a(k),p(l)) is (for any 1Sksn, 1SlSm). 

Proof: 

slam,/I<ml(x,y) - sl7i<kJ,"P(l)(x,y) = ~ (a(l)i- a(k\) + }:. ({J(l)1- {J(m)) 

i=x+l j=l 

It is easy to see that for all values of x ,y ,k and l this difference is non-negative, 

which proves the lemma. 0 

Theorem 5.1: Let a<Sl be obtained from a by repeatedly subtracting 1 from the 

largest element U-S times and let fi<sJ be obtained from bby repeatedly adding 1 

to the smallest element S - L times. Then (a15 l•P<sJ) is realizable if there is any 

realizable pair of sequences (y,71) where 'Yisai, ~1 ~b1 (for all 1SiSn, lSjSm) 

and ~ y i = :2: ~ J = S . 
i=l j=l 

Proof: By induction on U-S using lemma 5.1 0 

(a<SJ•P<sJ) can be obtained from (a,b> efficiently in parallel by a simple 

partial-sums computation. The algorithm is: 

(1) For all S, lsSsU, do I.P: 

(1.1) Compute a(S) and 71(S)· 

(1.2) Test if (a<sJ.7J<sJ) is realizable (( using the method described in [FF] )). 

(2) Select an S for which (a<SJ•P<sl) is realizable. 

(3) Compute M = MATRIX_CONSTR UCTION(a<sl,7J<sl). 

Steps (1.1) and (1.2) are simple partial-sum computations, and can be imple

mented using O(n + m) processors. Since steps (1) and (2) can be implemented 

within the time and processor bounds used for step 13), the algorithm has the same 

parallel complexity as the matrix construction algorithm. Note that we may per

form step (2) with some criterion in mind (e.g. "construct a matrix with the smal

lest possible number of l's subject to ... "). 
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The extension of the symmetric supply-demand problem turns out to be even 

simpler. Here the natural extension would be that all the f values represent upper 

bounds, since making a number "less positive" corresponds to less supply, and 

making a number "more negative" corresponds to more demand. So in an instance 

of this problems, the positive number would sum up to + H and the negative 

number would sum up to - L, for some H > L. 

Here, as opposed to the matrix construction problem, it is clear which value of 

S works best (where S is the sum of the positive entries, and minus the sum of the 

negative entries). By looking at the expressions for the slack vector, one can see 

that decreasing S cannot ruin feasibility. Therefore S should be selected to be as 

small as possible, i.e. S = L. 

To summerize, only the positive f entries should be modified. Again, as in the 

matrix construction problem, the best way to modify these numbers is to repeat

edly subtract one unit from the largest entry until H- L units have been sub

tracted. 
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